Go 复合数据类型:原生map类型

一.什么是 map 类型?

map 是 Go 语言提供的一种抽象数据类型,它表示一组无序的键值对。用 key 和 value 分别代表 map 的键和值。而且,map 集合中每个 key 都是唯一的:

img

和切片类似,作为复合类型的 map,它在 Go 中的类型表示也是由 key 类型与 value 类型组成的,就像下面代码:

map[key_type]value_type

key 与 value 的类型可以相同,也可以不同:

map[string]string // key与value元素的类型相同
map[int]string    // key与value元素的类型不同

如果两个 map 类型的 key 元素类型相同,value 元素类型也相同,那么我们可以说它们是同一个 map 类型,否则就是不同的 map 类型。

这里,我们要注意,map 类型对 value 的类型没有限制,但是对 key 的类型却有严格要求,因为 map 类型要保证 key 的唯一性。Go 语言中要求,key 的类型必须支持“==”和“!=”两种比较操作符

但是,在 Go 语言中,函数类型、map 类型自身,以及切片只支持与 nil 的比较,而不支持同类型两个变量的比较。如果像下面代码这样,进行这些类型的比较,Go 编译器将会报错:

s1 := make([]int, 1)
s2 := make([]int, 2)
f1 := func() {}
f2 := func() {}
m1 := make(map[int]string)
m2 := make(map[int]string)
println(s1 == s2) // 错误:invalid operation: s1 == s2 (slice can only be compared to nil)
println(f1 == f2) // 错误:invalid operation: f1 == f2 (func can only be compared to nil)
println(m1 == m2) // 错误:invalid operation: m1 == m2 (map can only be compared to nil)

因此在这里,你一定要注意:函数类型、map 类型自身,以及切片类型是不能作为 map 的 key 类型的。

知道如何表示一个 map 类型后,接下来,我们来看看如何声明和初始化一个 map 类型的变量。

二.map 变量的声明和初始化

我们可以这样声明一个 map 变量:

var m map[string]int // 一个map[string]int类型的变量

和切片类型变量一样,如果我们没有显式地赋予 map 变量初值,map 类型变量的默认值为 nil。

不过切片变量和 map 变量在这里也有些不同。初值为零值 nil 的切片类型变量,可以借助内置的 append 的函数进行操作,这种在 Go 语言中被称为“零值可用”。定义“零值可用”的类型,可以提升我们开发者的使用体验,我们不用再担心变量的初始状态是否有效。

但 map 类型,因为它内部实现的复杂性,无法“零值可用”。所以,如果我们对处于零值状态的 map 变量直接进行操作,就会导致运行时异常(panic),从而导致程序进程异常退出:

var m map[string]int // m = nil
m["key"] = 1         // 发生运行时异常:panic: assignment to entry in nil map

所以,我们必须对 map 类型变量进行显式初始化后才能使用。那我们怎样对 map 类型变量进行初始化呢?

和切片一样,为 map 类型变量显式赋值有两种方式:一种是使用复合字面值;另外一种是使用 make 这个预声明的内置函数。

方法一:使用复合字面值初始化 map 类型变量。

我们先来看这句代码:

m := map[int]string{}

这里,我们显式初始化了 map 类型变量 m。不过,你要注意,虽然此时 map 类型变量 m 中没有任何键值对,但变量 m 也不等同于初值为 nil 的 map 变量。这个时候,我们对 m 进行键值对的插入操作,不会引发运行时异常。

这里我们再看看怎么通过稍微复杂一些的复合字面值,对 map 类型变量进行初始化:

m1 := map[int][]string{
    1: []string{"val1_1", "val1_2"},
    3: []string{"val3_1", "val3_2", "val3_3"},
    7: []string{"val7_1"},
}

type Position struct { 
    x float64 
    y float64
}

m2 := map[Position]string{
    Position{29.935523, 52.568915}: "school",
    Position{25.352594, 113.304361}: "shopping-mall",
    Position{73.224455, 111.804306}: "hospital",
}

我们看到,上面代码虽然完成了对两个 map 类型变量 m1 和 m2 的显式初始化,但不知道你有没有发现一个问题,作为初值的字面值似乎有些“臃肿”。你看,作为初值的字面值采用了复合类型的元素类型,而且在编写字面值时还带上了各自的元素类型,比如作为 map[int] []string 值类型的[]string,以及作为 map[Position]string 的 key 类型的 Position。

别急!针对这种情况,Go 提供了“语法糖”。这种情况下,Go 允许省略字面值中的元素类型。因为 map 类型表示中包含了 key 和 value 的元素类型,Go 编译器已经有足够的信息,来推导出字面值中各个值的类型了。我们以 m2 为例,这里的显式初始化代码和上面变量 m2 的初始化代码是等价的:

m2 := map[Position]string{
    {29.935523, 52.568915}: "school",
    {25.352594, 113.304361}: "shopping-mall",
    {73.224455, 111.804306}: "hospital",
}

以后在无特殊说明的情况下,我们都将使用这种简化后的字面值初始化方式。

方法二:使用 make 为 map 类型变量进行显式初始化。

和切片通过 make 进行初始化一样,通过 make 的初始化方式,我们可以为 map 类型变量指定键值对的初始容量,但无法进行具体的键值对赋值,就像下面代码这样:

m1 := make(map[int]string) // 未指定初始容量
m2 := make(map[int]string, 8) // 指定初始容量为8

三.map 的基本操作

操作一:插入新键值对

面对一个非 nil 的 map 类型变量,我们可以在其中插入符合 map 类型定义的任意新键值对。插入新键值对的方式很简单,我们只需要把 value 赋值给 map 中对应的 key 就可以了:

m := map[string]int {
  "key1" : 1,
  "key2" : 2,
}

m["key1"] = 11 // 11会覆盖掉"key1"对应的旧值1
m["key3"] = 3  // 此时m为map[key1:11 key2:2 key3:3]

而且,我们不需要自己判断数据有没有插入成功,因为 Go 会保证插入总是成功的。这里,Go 运行时会负责 map 变量内部的内存管理,因此除非是系统内存耗尽,我们可以不用担心向 map 中插入新数据的数量和执行结果。不过,如果我们插入新键值对的时候,某个 key 已经存在于 map 中了,那我们的插入操作就会用新值覆盖旧值:

m := map[string]int {
  "key1" : 1,
  "key2" : 2,
}

m["key1"] = 11 // 11会覆盖掉"key1"对应的旧值1
m["key3"] = 3  // 此时m为map[key1:11 key2:2 key3:3]

从这段代码中你可以看到,map 类型变量 m 在声明的同时就做了初始化,它的内部建立了两个键值对,其中就包含键 key1。所以后面我们再给键 key1 进行赋值时,Go 不会重新创建 key1 键,而是会用新值 (11) 把 key1 键对应的旧值 (1) 替换掉。

操作二:获取键值对数量

如果我们在编码中,想知道当前 map 类型变量中已经建立了多少个键值对,那我们可以怎么做呢?和切片一样,map 类型也可以通过内置函数 len,获取当前变量已经存储的键值对数量:

m := map[string]int {
  "key1" : 1,
  "key2" : 2,
}

fmt.Println(len(m)) // 2
m["key3"] = 3  
fmt.Println(len(m)) // 3

不过,这里要注意的是我们不能对 map 类型变量调用 cap,来获取当前容量,这是 map 类型与切片类型的一个不同点。

操作三:查找和数据读取

和写入相比,map 类型更多用在查找和数据读取场合。所谓查找,就是判断某个 key 是否存在于某个 map 中。有了前面向 map 插入键值对的基础,我们可能自然而然地想到,可以用下面代码去查找一个键并获得该键对应的值:

m := make(map[string]int)
v := m["key1"]

乍一看,第二行代码在语法上好像并没有什么不当之处,但其实通过这行语句,我们还是无法确定键 key1 是否真实存在于 map 中。这是因为,当我们尝试去获取一个键对应的值的时候,如果这个键在 map 中并不存在,我们也会得到一个值,这个值是 value 元素类型的零值

我们以上面这个代码为例,如果键 key1 在 map 中并不存在,那么 v 的值就会被赋予 value 元素类型 int 的零值,也就是 0。所以我们无法通过 v 值判断出,究竟是因为 key1 不存在返回的零值,还是因为 key1 本身对应的 value 就是 0。

那么在 map 中查找 key 的正确姿势是什么呢?Go 语言的 map 类型支持通过用一种名为“comma ok”的惯用法,进行对某个 key 的查询。接下来我们就用“comma ok”惯用法改造一下上面的代码:

m := make(map[string]int)
v, ok := m["key1"]
if !ok {
    // "key1"不在map中
}

// "key1"在map中,v将被赋予"key1"键对应的value

我们看到,这里我们通过了一个布尔类型变量 ok,来判断键“key1”是否存在于 map 中。如果存在,变量 v 就会被正确地赋值为键“key1”对应的 value。

不过,如果我们并不关心某个键对应的 value,而只关心某个键是否在于 map 中,我们可以使用空标识符替代变量 v,忽略可能返回的 value:

m := make(map[string]int)
_, ok := m["key1"]
... ...

因此,你一定要记住:在 Go 语言中,请使用“comma ok”惯用法对 map 进行键查找和键值读取操作。

操作四:删除数据

接下来,我们再看看看如何从 map 中删除某个键值对。在 Go 中,我们需要借助内置函数 delete 来从 map 中删除数据。使用 delete 函数的情况下,传入的第一个参数是我们的 map 类型变量,第二个参数就是我们想要删除的键。我们可以看看这个代码示例:

m := map[string]int {
  "key1" : 1,
  "key2" : 2,
}

fmt.Println(m) // map[key1:1 key2:2]
delete(m, "key2") // 删除"key2"
fmt.Println(m) // map[key1:1]

操作五:遍历 map 中的键值数据

最后,我们来说一下如何遍历 map 中的键值数据。这一点虽然不像查询和读取操作那么常见,但日常开发中我们还是有这个需求的。在 Go 中,遍历 map 的键值对只有一种方法,那就是像对待切片那样通过 for range 语句对 map 数据进行遍历。我们看一个例子:

package main

import "fmt"

func main() {
    m := map[int]int{
        1: 11,
        2: 12,
        3: 13,
    }

    fmt.Printf("{ ")
    for k, v := range m {
        fmt.Printf("[%d, %d] ", k, v)
    }
    fmt.Printf("}\n")
}

你看,通过 for range 遍历 map 变量 m,每次迭代都会返回一个键值对,其中键存在于变量 k 中,它对应的值存储在变量 v 中。我们可以运行一下这段代码,可以得到符合我们预期的结果:

{ [1, 11] [2, 12] [3, 13] }

如果我们只关心每次迭代的键,我们可以使用下面的方式对 map 进行遍历:

for k, _ := range m { 
  // 使用k
}

当然更地道的方式是这样的:

for k := range m {
  // 使用k
}

如果我们只关心每次迭代返回的键所对应的 value,我们同样可以通过空标识符替代变量 k,就像下面这样:

for _, v := range m {
  // 使用v
}

不过,前面 map 遍历的输出结果都非常理想,给我们的表象好像是迭代器按照 map 中元素的插入次序逐一遍历。那事实是不是这样呢?我们再来试试,多遍历几次这个 map 看看。

我们先来改造一下代码:

package main

import "fmt"

func doIteration(m map[int]int) {
    fmt.Printf("{ ")
    for k, v := range m {
        fmt.Printf("[%d, %d] ", k, v)
    }
    fmt.Printf("}\n")
}

func main() {
    m := map[int]int{
        1: 11,
        2: 12,
        3: 13,
    }

    for i := 0; i < 3; i++ {
        doIteration(m)
    }
}

运行一下上述代码,我们可以得到这样结果:

{ [1, 11] [2, 12] [3, 13] }
{ [2, 12] [3, 13] [1, 11] }
{ [1, 11] [2, 12] [3, 13] }

我们可以看到,对同一 map 做多次遍历的时候,每次遍历元素的次序都不相同。这是 Go 语言 map 类型的一个重要特点,也是很容易让 Go 初学者掉入坑中的一个地方。所以这里你一定要记住:程序逻辑千万不要依赖遍历 map 所得到的的元素次序。

四.map 变量的传递开销

和切片类型一样,map 也是引用类型。这就意味着 map 类型变量作为参数被传递给函数或方法的时候,实质上传递的只是一个“描述符”(后面我们再讲这个描述符究竟是什么),而不是整个 map 的数据拷贝,所以这个传递的开销是固定的,而且也很小。

并且,当 map 变量被传递到函数或方法内部后,我们在函数内部对 map 类型参数的修改在函数外部也是可见的。比如你从这个示例中就可以看到,函数 foo 中对 map 类型变量 m 进行了修改,而这些修改在 foo 函数外也可见。

package main

import "fmt"

func foo(m map[string]int) {
    m["key1"] = 11
    m["key2"] = 12
}

func main() {
    m := map[string]int{
        "key1": 1,
        "key2": 2,
    }

    fmt.Println(m) // map[key1:1 key2:2]  
    foo(m)
    fmt.Println(m) // map[key1:11 key2:12] 
}

五.map 的内部实现

和切片相比,map 类型的内部实现要更加复杂。Go 运行时使用一张哈希表来实现抽象的 map 类型。运行时实现了 map 类型操作的所有功能,包括查找、插入、删除等。在编译阶段,Go 编译器会将 Go 语法层面的 map 操作,重写成运行时对应的函数调用。大致的对应关系是这样的:

// 创建map类型变量实例
m := make(map[keyType]valType, capacityhint) → m := runtime.makemap(maptype, capacityhint, m)

// 插入新键值对或给键重新赋值
m["key"] = "value" → v := runtime.mapassign(maptype, m, "key") v是用于后续存储value的空间的地址

// 获取某键的值 
v := m["key"]      → v := runtime.mapaccess1(maptype, m, "key")
v, ok := m["key"]  → v, ok := runtime.mapaccess2(maptype, m, "key")

// 删除某键
delete(m, "key")   → runtime.mapdelete(maptype, m, “key”)

这是 map 类型在 Go 运行时层实现的示意图:

img

我们可以看到,和切片的运行时表示图相比,map 的实现示意图显然要复杂得多。接下来,我们结合这张图来简要描述一下 map 在运行时层的实现原理。我们重点讲解一下一个 map 变量在初始状态、进行键值对操作后,以及在并发场景下的 Go 运行时层的实现原理。

初始状态

从图中我们可以看到,与语法层面 map 类型变量(m)一一对应的是 *runtime.hmap 的实例,即 runtime.hmap 类型的指针,也就是我们前面在讲解 map 类型变量传递开销时提到的 map 类型的描述符。hmap 类型是 map 类型的头部结构(header),它存储了后续 map 类型操作所需的所有信息,包括:

img

真正用来存储键值对数据的是桶,也就是 bucket,每个 bucket 中存储的是 Hash 值低 bit 位数值相同的元素,默认的元素个数为 BUCKETSIZE(值为 8,Go 1.17 版本中在 $GOROOT/src/cmd/compile/internal/reflectdata/reflect.go 中定义,与 runtime/map.go 中常量 bucketCnt 保持一致)。

当某个 bucket(比如 buckets[0]) 的 8 个空槽 slot)都填满了,且 map 尚未达到扩容的条件的情况下,运行时会建立 overflow bucket,并将这个 overflow bucket 挂在上面 bucket(如 buckets[0])末尾的 overflow 指针上,这样两个 buckets 形成了一个链表结构,直到下一次 map 扩容之前,这个结构都会一直存在。

从图中我们可以看到,每个 bucket 由三部分组成,从上到下分别是 tophash 区域、key 存储区域和 value 存储区域。

tophash 区域

当我们向 map 插入一条数据,或者是从 map 按 key 查询数据的时候,运行时都会使用哈希函数对 key 做哈希运算,并获得一个哈希值(hashcode)。这个 hashcode 非常关键,运行时会把 hashcode“一分为二”来看待,其中低位区的值用于选定 bucket,高位区的值用于在某个 bucket 中确定 key 的位置。我把这一过程整理成了下面这张示意图,你理解起来可以更直观:

img

因此,每个 bucket 的 tophash 区域其实是用来快速定位 key 位置的,这样就避免了逐个 key 进行比较这种代价较大的操作。尤其是当 key 是 size 较大的字符串类型时,好处就更突出了。这是一种以空间换时间的思路。

key 存储区域

接着,我们看 tophash 区域下面是一块连续的内存区域,存储的是这个 bucket 承载的所有 key 数据。运行时在分配 bucket 的时候需要知道 key 的 Size。那么运行时是如何知道 key 的 size 的呢?

当我们声明一个 map 类型变量,比如 var m map[string]int 时,Go 运行时就会为这个变量对应的特定 map 类型,生成一个 runtime.maptype 实例。如果这个实例已经存在,就会直接复用。maptype 实例的结构是这样的:

type maptype struct {
    typ        _type
    key        *_type
    elem       *_type
    bucket     *_type // internal type representing a hash bucket
    keysize    uint8  // size of key slot
    elemsize   uint8  // size of elem slot
    bucketsize uint16 // size of bucket
    flags      uint32
} 

我们可以看到,这个实例包含了我们需要的 map 类型中的所有"元信息"。我们前面提到过,编译器会把语法层面的 map 操作重写成运行时对应的函数调用,这些运行时函数都有一个共同的特点,那就是第一个参数都是 maptype 指针类型的参数。

Go 运行时就是利用 maptype 参数中的信息确定 key 的类型和大小的。map 所用的 hash 函数也存放在 maptype.key.alg.hash(key, hmap.hash0) 中。同时 maptype 的存在也让 Go 中所有 map 类型都共享一套运行时 map 操作函数,而不是像 C++ 那样为每种 map 类型创建一套 map 操作函数,这样就节省了对最终二进制文件空间的占用。

value 存储区域

我们再接着看 key 存储区域下方的另外一块连续的内存区域,这个区域存储的是 key 对应的 value。和 key 一样,这个区域的创建也是得到了 maptype 中信息的帮助。Go 运行时采用了把 key 和 value 分开存储的方式,而不是采用一个 kv 接着一个 kv 的 kv 紧邻方式存储,这带来的其实是算法上的复杂性,但却减少了因内存对齐带来的内存浪费。

我们以 map[int8]int64 为例,看看下面的存储空间利用率对比图:

img

你会看到,当前 Go 运行时使用的方案内存利用效率很高,而 kv 紧邻存储的方案在 map[int8]int64 这样的例子中内存浪费十分严重,它的内存利用率是 72/128=56.25%,有近一半的空间都浪费掉了。

另外,还有一点我要跟你强调一下,如果 key 或 value 的数据长度大于一定数值,那么运行时不会在 bucket 中直接存储数据,而是会存储 key 或 value 数据的指针。目前 Go 运行时定义的最大 key 和 value 的长度是这样的:

// $GOROOT/src/runtime/map.go
const (
    maxKeySize  = 128
    maxElemSize = 128
)

六.map 扩容

我们前面提到过,map 会对底层使用的内存进行自动管理。因此,在使用过程中,当插入元素个数超出一定数值后,map 一定会存在自动扩容的问题,也就是怎么扩充 bucket 的数量,并重新在 bucket 间均衡分配数据的问题。

那么 map 在什么情况下会进行扩容呢?Go 运行时的 map 实现中引入了一个 LoadFactor(负载因子),当 count > *LoadFactor 2^B** 或 overflow bucket 过多时,运行时会自动对 map 进行扩容。目前 Go 最新 1.17 版本 LoadFactor 设置为 6.5(loadFactorNum/loadFactorDen)。这里是 Go 中与 map 扩容相关的部分源码:

// $GOROOT/src/runtime/map.go
const (
  ... ...

  loadFactorNum = 13
  loadFactorDen = 2
  ... ...
)

func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
  ... ...
  if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
    hashGrow(t, h)
    goto again // Growing the table invalidates everything, so try again
  }
  ... ...
}

这两方面原因导致的扩容,在运行时的操作其实是不一样的。如果是因为 overflow bucket 过多导致的“扩容”,实际上运行时会新建一个和现有规模一样的 bucket 数组,然后在 assign 和 delete 时做排空和迁移。

如果是因为当前数据数量超出 LoadFactor 指定水位而进行的扩容,那么运行时会建立一个两倍于现有规模的 bucket 数组,但真正的排空和迁移工作也是在 assign 和 delete 时逐步进行的。原 bucket 数组会挂在 hmap 的 oldbuckets 指针下面,直到原 buckets 数组中所有数据都迁移到新数组后,原 buckets 数组才会被释放。你可以结合下面的 map 扩容示意图来理解这个过程,这会让你理解得更深刻一些:

img

七.map 与并发

package main

import (
    "fmt"
    "time"
)

func doIteration(m map[int]int) {
    for k, v := range m {
        _ = fmt.Sprintf("[%d, %d] ", k, v)
    }
}

func doWrite(m map[int]int) {
    for k, v := range m {
        m[k] = v + 1
    }
}

func main() {
    m := map[int]int{
        1: 11,
        2: 12,
        3: 13,
    }

    go func() {
        for i := 0; i < 1000; i++ {
            doIteration(m)
        }
    }()

    go func() {
        for i := 0; i < 1000; i++ {
            doWrite(m)
        }
    }()

    time.Sleep(5 * time.Second)
}

运行这个示例程序,我们会得到下面的执行错误结果:

fatal error: concurrent map iteration and map write

不过,如果我们仅仅是进行并发读,map 是没有问题的。而且,Go 1.9 版本中引入了支持并发写安全的 sync.Map 类型,可以在并发读写的场景下替换掉 map。如果你有这方面的需求,可以查看一下sync.Map 的手册

另外,你要注意,考虑到 map 可以自动扩容,map 中数据元素的 value 位置可能在这一过程中发生变化,所以 Go 不允许获取 map 中 value 的地址,这个约束是在编译期间就生效的。下面这段代码就展示了 Go 编译器识别出获取 map 中 value 地址的语句后,给出的编译错误:

p := &m[key]  // cannot take the address of m[key]
fmt.Println(p)

版权声明:
作者:淘小欣
链接:https://blog.taoxiaoxin.club/212.html
来源:淘小欣的博客
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
海报
Go 复合数据类型:原生map类型
一.什么是 map 类型? map 是 Go 语言提供的一种抽象数据类型,它表示一组无序的键值对。用 key 和 value 分别代表 map 的键和值。而且,map 集合中每个 key ……
<<上一篇
下一篇>>